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This paper is a continuation of Part 1 in which the idea of a synchronous vibration
eliminator was investigated. The vibrator movement friction causes phase shifts of vibrators.
Appearance of the vibrators' phase displacements causes that their e!ect on an object does
not compensate fully the excitation and, therefore, residual vibrations remain. A parameter
describing the e$ciency of this method of vibration elimination was introduced. The
in#uence of parameters of a system was investigated based on values of phase displacements.
A detailed analysis was carried out for one or two vibrators and results are presented in
a chart form. The e$ciency of the method was tested. The stability of synchronous
movement of the eliminators with excitation was veri"ed. A criterion of this stability was
given and conditions were set in which vibrator motions assuring vibration elimination may
occur. The maximum di!erence between excitation frequency and initial velocity of
vibrators was investigated for which synchronous interruptions may evolve. It was shown
that synchronous vibrator motions and the elimination of object vibrations can occur only
in supercritical ranges of excitation frequencies. On the contrary, in undercritical ranges
vibrators increase object vibrations.

( 2000 Academic Press
1. DEVIATION OF VIBRATOR POSITIONS

Vibration forces acting on vibrators attempt to replace them in positions in which they have
zero values. These positions must be stable so that they can be physically realized. In every
movement there are frictions which change this motion in correlation to these friction
values. Therefore, movement is going to be slower and the positions of equilibrium are not
going to overlap with those described before. The vibrator friction, in general, can consist of
viscous resistance, rolling resistance, bed friction, and motor driving torque. The last of
these is of equal importance as the others; however, it may have positive and negative
values.

New equilibrium positions are described by phases d
ik

which di!er by D
i
from position d

ikt
for which object vibrations fully disappeared:

d
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(1)

The vibration forces balance vibrator movement friction in the new equilibrium
positions. The equations from which position deviations of vibrators D

1
,2,D

N
according

to &&ideal'' positions that can be calculated have the form
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where P is described by equation (27) of Part 1 and the movement friction F by equation
(12) of Part 1. A relation of general vibration force can be expanded in power series
according to deviation D

i
and if these deviations are small we need only take into

consideration the "rst two terms:
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After using equation (17) of Part 1 we arrive at
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If we replace equation (2) with equation (4) we obtain
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This is a system of N equations with unknowns D
1
,2, D

N
, realized by movement friction

F and the system's parameters.
If object vibrations can be compensated by one vibrator then from the above relation we

get
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. (6)

For an object suspended in such a way that k
x
"k

y
, e

x
"e

y
the following occurs:

a
x
"a

y
, u

x
"u

y
, and deviation of vibrator positioning placed on an object moving with

plane movement is two times smaller than for a vibrator on the object with one degree of
freedom [1}3].

According to previous assumptions, this method is e$cient in a supercritical range of
frequencies for which u

x
, u

y
3 (n/2, n) and the denominator in relation (6) becomes negative.

For positive resistance force F"n
1
R2Du, position deviation is negative, this means that

the vibrator movement is delayed according to excitation. The vibrator position deviation
(shown in Figure 1(a)) is presented according to forcing frequency. The viscous friction
coe$cient of the vibrator is constant and its mass becomes smaller with forcing frequency.
The frequency di!erence is either Du"X!u"$5 rad/s. For small damping of an
object, vibrator positioning deviation becomes bigger according to exciting frequency
increase. For large object damping (e"0)5), the vibrator positioning deviation is smaller
and almost constant in the analyzed frequency range.

The charts from Figure 1(b) deal with a case where the vibrator viscous coe$cient n
1

is
proportional to vibrator mass changing with excitation frequency according to the



Figure 1. Vibrator positioning deviation in relation to forcing frequency for (a) constant coe$cient of resistance
n
1
"0)05 kg/s"const., (b) resistance coe$cient proportional to vibrator mass.
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following relation:
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In this case, vibrator positioning deviation for small damping (e"0)1) "rst becomes larger
as frequency X increases and then it becomes smaller. For large damping (e"0)5), the
deviation D decreases as X increases.

Far from resonance, when X<u
ox

, u
oy

we can assume that u
x
, u

y
:n and then
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For undeveloped friction, which can happen when rolling friction or sliding friction exists
and at the same time u"X, the vibrator positioning deviation is not exactly de"ned and it
can have di!erent values in a certain range. The condition of balance, in this case, has the
form
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We get from this
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For a larger number of vibrators their shifts D
1
,2,D

N
as function of excitation have to be

obtained from equation system (5). In matrix notation they have the form

AD!F)0, (11)

and from this we get

D"A~1F , (12)
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where
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For two vibrators meeting only viscous resistance, phase shifts D
1
, D

2
were calculated from

the above relation and are shown in Figure 2(a, b). A case of kinematic excitation in
> direction was tested. It introduces changing forces in time in this direction through elastic
and damping elements on an object. Also, a case of constant coe$cients, n

1
"n

2
"const,

was analyzed as well as coe$cients proportional to changing vibrator mass. One vibrator
exhibits a similar characteristic of change.

The relation given makes sense only when real solutions of equations exist and this takes
place for DP

i
D
max

'F
i
.

For large deviations D
1
,2, D

N
it is necessary to take into consideration a large number of

terms of force P
i
explicit in series expansion. Then we get a non-linear algebraic equation

system from which it is possible to calculate values of these deviations.
A vibrator's arrangement in replacement positions of about D

1
,2, D

N
according to

positions d
1kt

,2, d
Nkt

causes that conditions (20) of Part 1 cannot be satis"ed and, therefore,
object vibrations are not fully compensated through vibrator actions. A certain excitation
residual= (t) is left and it causes existence of object residual vibrations q

r
(t). This results

from forces acting directly on an object, kinematic excitation and vibrator actions, can be
written as
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For small D
1
,2,*

N
we can continue as with the vibration force P, and then W has the form
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Figure 2. Vibrator positioning deviation for N"2, *u"X!u"!5 rad/s, and n
1
"n

2
"2)5]10~2 kg/s:

(a) constant coe$cient of resistance n
1
"const., (b) resistance coe$cient proportional to vibrator mass.
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This can be presented in another form as
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The object motion equation
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can be treated as an imaginary part of the equation
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Equation solution (16) has the form
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Residual vibration amplitudes are related to the amplitude force W
0
, the closeness of the

exciting frequency to an object's natural frequency, and its damping. If the directions
assumed are principal directions of a suspended object, then relations for vibration
amplitudes are rather simple. For example,
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As a measurement of vibration reduction l, the following ratio (of residual vibration
amplitude to object vibration amplitude, which does not have eliminators) was de"ned:
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100%. (20)

For full elimination of vibrations, v becomes zero.
For example, for the excitation presented in Figure 3(a) of Part 1, which is compensated

by one vibrator, we get
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For this case of excitation, the vibration reduction as a function of frequency X was
presented in Figure 3.
Figure 3. Vibration reduction degree for (a) constant coe$cient of resistance n
1
"0)05 kg/s"const.,

Du"5 rad/s, e
x
"e

y
"e; (b) viscous coe$cient proportional to vibrator mass.
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For small object damping and for X<u
ox

, u
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, where u
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, u

y
:n, the above relationship

can be simpli"ed to
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The e$ciency of this method is greater for excitation with a frequency which is somewhat
greater than an object's natural frequency. This means that in such a range, where object
vibrations are most dangerous, the method's e$ciency increases. Also, when vibrator
movement friction decreases, the e$ciency increases.

It was shown that vibrators can move synchronously with excitation, but because of the
friction which they encounter, their movement is described as
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and because of deviations D
i
, the e$ciency of the method is reduced.

Also, such a situation can occur when vibrators decrease vibrations in one direction and
increase them in another direction.

2. STABILITY RESEARCHERS

Under the action of general vibration forces P, vibrators place themselves in positions of
equilibrium. From the run of forces, we can state that vibrator movements with phases close
to d

ikt
can be stable after ful"lling certain requirements. In order for the physical possibility

of movements to exist in equation (24), the motion with "nal phases must be stable. It is
necessary to check if for the vibrator with movement phases d

ikt
, giving full elimination of

vibrations, or if, for d
ik
, for which certain residual vibrations remain, stable conditions are

ful"lled.
Asymptotically stability movements (24) related to phases d
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exist, if for this

solution all algebraic roots of equation of N degree,
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have negative real parts:

Re(s)(0.

If a real part of only one of the roots is positive then movements having form (24) are
unstable and cannot be realized physically [1, 2, 4].

Individual derivatives are described by
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but in the above relation the term j"i does not exist in the summation.
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For jOi
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Derivatives are calculated in positions d
1k

,2, d
Nk

. Phases d
ikt

satisfy equation (20) of Part 1
and derivations of vibrator positioning are derived from relations (11).

To check the stability of one vibrator is the easiest task because the relations are not
complicated and it is possible to "nd if there is stability or not by using any number. One
vibrator can compensate only for the excitation shown in Figure 3(a) of Part 1. The
equilibrium position of the vibrator can be described as
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By substituting suitable relations we can get
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The resistance F can be described by equation (12) of Part 1. For extreme resistance,
a solution of equation (29) exists when
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If the parameters of object suspension are identical in both directions then a
ox
"a

oy
,

u
v
"u

v
, and from the above relation we can get
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Values of vibrator positioning deviation can be in the range
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If vibrator resistance combines with viscous friction in the form F"n
1
R2Du, then from

equation (30) we can calculate the maximal frequency di!erence. Real solutions of
equation (28) exist when the di!erence Du"X!u between forcing frequency and initial
velocity of the vibrator is within the range
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The admissible frequency di!erence is not only a function of vibrator friction but also
depends on exciting frequency and object damping. It is much bigger than for an object of
one degree of freedom [1, 2]. This results from the fact that general vibration forces are
much larger because they come from a few component vibrations x (t), y (t) and c(t). In



Figure 4. Admitting range of frequency di!erence Du for (a) constant coe$cient of resistance
n
1
"0)05 kg/s"const., (b) resistance coe$cient proportional to vibrator mass.
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Figure 4, an extreme frequency di!erence Du was shown in the range of the above critical
frequency of excitation as a function of a ratio of forcing frequency to an object's natural
frequency, X/u

ox
, and the object damping e

x
. Figure 4(a) shows a case where the resistance

coe$cient n
1

is constant. Figure 4(b) relates to coe$cient n
1
, which is proportionate to the

object mass. For constant resistance, the admissible frequency di!erence gets smaller with
an increase of exciting frequency. This change is strong for small object damping e

x
, e

y
.

In agreement with condition (25), the vibrator position d
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"n is stable only when
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The above-mentioned condition can be written as

a
ox

cos(u
x
#D)#a

oy
cos(u

y
#D)(0. (36)

If a derivation of vibrator positioning is in range (32) then condition (36) for a vibrator in
position d
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frequencies the vibrator position d
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"n is unstable.

For deviations of vibrator positioning DO0, the equilibrium position is moved
according to d
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"n and stability condition (25) is also satis"ed for X'u
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Figure 5. Stability ranges for vibrators moving with viscous resistance: (a) u
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range of frequencies, is very small. In Figure 5 the range of stability for di!erent ratios
u

oy
/u

ox
and object damping was indicated.

For two similar vibrators, which compensate kinematic excitation in the direction of the
>-axis, condition (25) has the form
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Roots of equation (38) are
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therefore
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Roots of equation (38) are negative (s
1
, s

2
(0) for exciting frequencies X'u
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vibrator's positions d
1kt

"3n/2, d
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"n/2 are stable for forcing frequencies which are larger
than the object's natural frequencies. For a larger number of vibrations, we reach the same
conclusions.

If vibrators move only with rolling friction then stability conditions can be ful"lled only
in a certain narrow range of forcing frequencies X and in an overcritical area which is near
the resonance. This range increases with the decrease of the rolling resistance coe$cient.

The stability of synchronous movement, in form (24) was also tested in relation to the
variational equation which was obtained from the full equation system (7, 8) of Part 1. Small
disturbances q
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(t) of object position and q*

w
(t) for vibrators were introduced. General

co-ordinates of an object and vibrators have the form

q(t)"q
r
#q

1
, q

w
(t)"q

w0
#q*

w
, (42)

where q
r
-co-ordinates of "xed object movement (residual vibrations), and q

w0
-co-ordinates

of vibrators in "xed movement:
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. (43)

By substituting the above relations into equations (7, 8) of Part 1 by assuming that q
i
and q*

w
are small quantities and that vibrator vibration frequencies around the "nal position are, at
least, 10 times smaller than forcing frequencies, we obtained the linear di!erential equation
system
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The above equations are for time q"Xt.
The solutions of these equations con"rmed stability of vibrators in positions d

1k
,2, d

Nk
in an overcritical range of forcing frequencies and a lack of stability for X(u

ox
, u

oy
, u

oc .
Exemplary results are shown in Figures 6 and 7.

Free vibration frequencies of a vibrator around the equilibrium position for X'u
ox

, u
oy

and lack of damping are described by the relation

u
oi
"S

LP
i

Ld
i

/I
i
, (46)



Figure 6. Behaviour of an object and vibrator during disturbance of the initial position of vibrator in an
overcritical range (N"1): (a, b) component disturbances of object vibration x

1
(q), y

1
(q): (c) disturbance of vibrator

position g
1
(q).

Figure 7. Behaviour of two vibrators during disturbance of its initial position: (a) in the supercritical range
X'u

0x
, u

0y
, (b) in the undercritical range X(u

0x
, u

0y
.
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where P
i
is described by relation (27) and derivatives are calculated at points d

1k
,2, d

Nk
. For

one excitation from Figure 3(a) of Part 1 which is compensated by one vibrator we obtained

u
ot
"XJ(!mRa

x
cosu

x
)/I. (47)

By knowing the free vibrations of a vibrator around the equilibrium position we can also
describe the vibrator's critical damping and non-dimensional damping coe$cient e

i
for

certain viscous resistance coe$cient, of vibration n
i
:

n
1kr

R2

2I
"u

o1
. (48)
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From this critical damping coe$cient we "nd

n
1kr

"

2X

R2
J(!ma

x
RI cos u

x
) . (49)

The ratio of critical damping for the vibrator is

e
1
"

n
1

n
1kr

"

n
1
R2

2XJ(!mRa
x
I cosu

x
)
. (50)

Coe$cient e
i
determines the character of vibrator movement to the "nal position and the

ratio of disappearance of its vibrations after arriving at this position.

3. CONCLUSIONS

Vibration eliminators such as spheres or rolls placed in a rotating cylinder or physical
pendulum can compensate for changing loads acting on an object when certain conditions
are satis"ed. Vibrators rotating with individual initial velocities and in di!erent directions
organize themselves in such a way that their resultant force is an anti-phase to the excitation
if only the frequency of this excitation is larger than the natural frequency of an object.

Such types of vibrator movements, which are synchronous with excitation, can exist only
if the vibrator movement resistance does not exceed a certain level. If the maximal value of
vibration force is smaller than the movement resistance then these types of vibrator
movements do not appear. In this case, vibrators organize themselves in such a way as to
compensate each other.

The largest vibration elimination takes place when initial velocities of vibrators are equal
to forcing frequency and viscous resistance is against vibrator movements. In this situation
object vibrations will be fully eliminated. But when these frequencies are disimilar or rolling
resistance exists or if there is bed friction then vibrators move with phase delay according to
&&ideal'' positions. Therefore, vibrators do not compensate entirely for excitation of an object
and residual vibrations remain. The obtained runs give a view of the behaviour of vibrators
and how this process is developed in time.

Vibrators move according to the assumed reference system under action of vibration
forces coming from the vibrations of the object. Certain relations were introduced, from
which we can "nd what vibration forces depend on and where they have their zero places.
From a run of these forces we can determine which positions are stable. If an object cannot
vibrate then these forces do not exist.

For the forcing frequencies that are between the smallest and the largest natural
frequencies of the object, there is a range in which vibrators can compensate object
vibrations. For these small values of vibration forces, vibrators coming to "nal positions
take longer and position deviations become larger which causes the method e$ciency in
this range to be small.

Vibrators can fully eliminate object vibrations when their number, static momentum,
rotating directions, axis co-ordinates and "nal phases are able to justify conditions (20) of
Part 1. For certain particular cases of excitation, we can "nd a minimal number of vibrators
which is needed to eliminate vibrations. To use the basic attribute of this method, that is, the
self-organizing of a system without human participation and for unknown excitation, the
number of vibrators placed on an object has to be large enough to satisfy these conditions
for an individual excitation. If the conditions mentioned in this paper are satis"ed then
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vibrators can recognize the system's excitation and organize themselves in such a way as to
eliminate it.

The analysis give in this paper deals with a case of mono-harmonic forces. If the
excitation is poly-harmonic then we have to use a vibrator set tuned to individual
frequencies appearing in an excitation. This is a multiplication of the problem presented.
For excitation with a continuous frequency spectrum, inertia vibrators can eliminate only
excitation components that have frequencies in agreement with the velocity of vibrators.

For the excitation with frequencies that are smaller than the system's natural frequencies,
vibrators organize themselves in such a way that they move almost in phase with the
excitation. This causes an increase of object vibrations.
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